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Figure 1: Ground Truth (Green), Synthetic Hazy (Yellow), and Real Hazy (Red) images across various scenes of HazeSpace2M.

ABSTRACT
Reducing the atmospheric haze and enhancing image clarity is
crucial for computer vision applications. The lack of real-life hazy
ground truth images necessitates synthetic datasets, which often
lack diverse haze types, impeding effective haze type classifica-
tion and dehazing algorithm selection. This research introduces
the HazeSpace2M dataset, a collection of over 2 million images
designed to enhance dehazing through haze type classification.
HazeSpace2M includes diverse scenes with 10 haze intensity lev-
els, featuring Fog, Cloud, and Environmental Haze (EH). Using the
dataset, we introduce a technique of haze type classification fol-
lowed by specialized dehazers to clear hazy images. Unlike conven-
tional methods, our approach classifies haze types before applying
type-specific dehazing, improving clarity in real-life hazy images.
Benchmarking with state-of-the-art (SOTA) models, ResNet50 and
AlexNet achieve 92.75% and 92.50% accuracy, respectively, against
existing synthetic datasets. However, these models achieve only

∗Corresponding author

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681382

80% and 70% accuracy, respectively, against our Real Hazy Testset
(RHT), highlighting the challenging nature of our HazeSpace2M
dataset. Additional experiments show that haze type classification
followed by specialized dehazing improves results by 2.41% in PSNR,
17.14% in SSIM, and 10.2% in MSE over general dehazers. Moreover,
when testing with SOTA dehazing models, we found that applying
our proposed framework significantly improves their performance.
These results underscore the significance of HazeSpace2M and our
proposed framework in addressing atmospheric haze in multimedia
processing. Complete code and dataset is available on GitHub.
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1 INTRODUCTION
Atmospheric haze significantly compromises image clarity, posing
difficulties for computer vision tasks in autonomous systems, re-
mote sensing, and surveillance [70]. Adverse weather conditions
that reduce visibility can lead to accidents, as documented in vari-
ous studies [23, 32, 43, 61]. To tackle the issues of hazes, researchers
have developed dehazing algorithms to counteract haze’s effects
on image quality [7]. Advancements in traffic systems and ve-
hicle detection technology further necessitate enhanced visibil-
ity [15, 43, 57, 71]. Current efforts focus on refining models to
restore clarity to images impaired by adverse environmental condi-
tions [44, 63, 65]. However, there is a consensus on the necessity for
versatile dehazing techniques across variable weather patterns [20],
with a rich dataset being crucial for developing robust dehazing
models for effective atmospheric dehazing. Because emerging fields,
e.g., agriculture and environmental studies, benefit from sophisti-
cated image processing across different domains using Unmanned
Aerial Vehicles (UAVs) to gather diverse scenes, including aerial
views [48]. These applications require analyzing high-resolution
images often obscured by various haze types, such as Fog and EH
in outdoor, street, and farmland settings and cloud in aerial views.

Large datasets with varied scenes and haze types are scarce; the
RESIDE SOTS [34] benchmark dataset covers synthetic hazy images
but is limited to a single haze type. Similarly, the Cityscapes [12]
dataset includes fog and rain conditions but is confined to street
scenes, highlighting a deficit in comprehensive hazy image datasets.
Current image restoration (IR) models often operate without rec-
ognizing the specific degradation type [33, 39, 45, 46, 62, 66, 69].
Although instruction-based IR methods [8, 11] improve perfor-
mance by classifying degradation type, they rely on manual input,
which is impractical for autonomous systems. An automated model
that can identify and adapt to various haze types in the image is
needed for effective dehazing without human intervention.

However, to train such versatile models, we need a dataset that
offers various haze types across different scene types [20], which
is absent in the literature. Identifying this gap in the literature, we
develop a dataset named "HazeSpace2M," suitable for haze type
classification and training haze type-specific specialized dehazers.
We structure the "HazeSpace2M" dataset in a way that is suitable for
haze type classification and training haze type-specific specialized
dehazers. Leveraging this dataset in this paper, we also propose a
novel idea of an intelligent image dehazing approach that performs
specialized dehazing based on the haze type present in an input
image. Thus, our research makes significant progress in the direc-
tion of image dehazing and classification, marked by the following
contributions:

• Development of a Benchmarking Dataset: We developed
HazeSpace2M as a comprehensive benchmarking dataset
designed explicitly for haze type classification. Additionally,
we are the first to introduce a hazy dataset for different
scene types, especially the Farmland scene type, which is
unparalleled in the literature. This dataset surpasses existing
datasets in terms of number of images (over 2 million), scene
types, type of hazes, and haze intensity (10 levels).

• Intelligent Haze Aware Dehazing: We propose a novel
framework that performs dehazing with specialized dehazers
based on the haze type present in the input hazy image.

• Benchmarking SOTA Models: We evaluate leading classifi-
cation and dehazing models, setting new benchmarks for
haze type classification and dehazing.

• Evidence for Specialized Dehazers' Efficacy: Our
findings show that specialized dehazers, informed by accu-
rate haze type classification, enhance dehazing performance,
surpassing the capabilities of generalized dehazing models.

2 RELATEDWORKS
In recent years, various hazy image datasets [4, 5, 12, 25, 34, 37, 50,
58, 59] have emerged to aid in developing single image dehazing
models. These datasets offer a range of images affected by different
hazes. For instance, the RESIDE dataset [34] compiles a variety of
images, including both indoor and outdoor settings, with hazy con-
ditions and their corresponding ground truth (GT) images. However,
it lacks distinct subsets for diverse images and haze conditions. Con-
versely, the Cityscapes dataset [12] provides fog and rain-afflicted
street scenes but lacks variety in scene types. The synthetic image
collections FRIDA [59] and FRIDA2 [58] are designed primarily for
algorithm assessment in visibility and contrast restoration, encom-
passing 90 and 330 images across urban road scenes, respectively.
Despite their utility, the synthetic nature of these sets limits their
effectiveness in modeling the complexity of real-world hazes.

To bridge the above mentioned gaps, the NH Haze [6] dataset,
introduced during the NTIRE2020 [1] challenge, features 55 out-
door scenes with actual haze conditions alongside their haze-free
GT images, proving invaluable for developing new dehazing meth-
ods. Moreover, the Haze4k dataset [37]-split into 3,000 training
and 1,000 testing images—provides ample data for benchmarking
novel dehazing approaches. Adding diversity, the Kede [40] dataset
contains 225 images with nine groups showcasing different out-
door settings and haze thicknesses. In contrast, the O-HAZE [5]
dataset with 45 scenes captured under consistent lighting condi-
tions offers realistic pairs of hazy and clear images, facilitating the
study of dehazing in authentic environments. In the realm of re-
mote sensing, datasets like Haze1k [25] and RS Haze [50] enrich the
dehazing research by providing images categorized by haze density
and showcasing a variety of cloud haze levels, respectively. Haze1k
offers 900 images curated for remote sensing applications, whereas
RS Haze challenges researchers with nine distinct haze levels in its
5,700 GT images. These datasets play a crucial role in enhancing
the development of algorithms that deal with the nuances of hazy
conditions observed in satellite imagery.

Overall, these datasets have become central to benchmarking
the performance of single image dehazing techniques. Especially,
the datasets like RESIDE [34] and Foggy Cityscapes [12] with their
extensive collection, are excellent for generalizing models and have
become a benchmark for assessing dehazing algorithms [9, 16–
18, 24, 28, 29, 36, 42, 50, 52]. However, the ranges of haze types and
scenes are limited, scoping the improvement with more diverse
datasets having various haze types for creating classificationmodels
capable of classifying various haze conditions. To fill this gap, we
present a new dataset that is both broad and diverse, covering
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a wide range of scene types and haze types, paving the way for
breakthroughs in the realm of single image dehazing in terms of
developing robust haze type classification and dehazing algorithms.

Table 1: Overview of HazeSpace2M dataset scene and haze
types, each with 10 distinct haze intensity levels.

HazeSpace2M

Outdoor Street Farmland Satellite

Fog Fog Fog CloudEH EH EH

10 different levels of haze for each category

3 OUR DATASET: HAZESPACE2M
HazeSpace2M is a diverse and large dataset with over 2M images,
including the GT and Hazy images of three different types of hazes:
Fog, Environmental Haze (EH), and Cloud. To the best of our knowl-
edge, we are the first to introduce both EH and Fog separately for
scenarios such as Outdoor, Street, and Farmlands. HazeSpace2M is
suitable for developing intelligent dehazing models based on haze
type classification. Notably, the HazeSpace2M includes four main
scene categories: Outdoor, Street, Farmland, and Satellite, encom-
passing three haze conditions: Fog, EH, and Cloud, as stated in
Table 1. Each GT image from every scene type features ten cor-
responding hazy images, varying from low to high intense levels.
The HazeSpace2M dataset includes an extensive collection of over
130,193 GT images and approximately two million hazy images,
each categorized into distinct levels of haze intensity across various
scene types. It also has a subset named Real Hazy Testset (RHT)
that features 1,030 real hazy images for evaluating models. This
comprehensive dataset not only paves the way for creating more
robust dehazing models but also facilitates the development of al-
gorithms capable of classifying the types of haze present, thereby
contributing significantly to image processing and multimedia.

3.1 Data Collection and Generation
We collected a large amount of image data from various sources to
serve as the GT images in the HazeSpace2M dataset.
Quality Assurance. As shown in Table 2, we collect most of our
GT images from the existing datasets or online under a Creative
Commons License (CML), and some are the images captured from
our personal devices. Cross-checking the quality of these images is
a challenging but essential task. Initially, to ensure the quality of
the GT images of our HazeSpace2M dataset, we established three
conditions for excluding GT images as follows:

• Resolution: The image is of low quality.
• Haze Presence: The image contains haze in any form.
• Irrelevance: The image is not relevant to the scene types
of HazeSpace2M.

If any image from our sources meets either of these criteria,
it is excluded from the GT set of the HazeSpace2M dataset. For
example, as shown in Table 2, we selected only 2,106 images from
the ADE20k [73, 74] dataset out of 27,638 and 7,851 images out
of 8,964 from the RESIDE SOTS [34] to use as GT images in the

Table 2: A breakdown of the various image sources and the
number of GT images selected from each source.

Scene Image Total # Total # of
Types Sources of Images GT Images

in Source we Pick

Outdoor (OD)

ADE20K [73, 74] 27,638 2,106
OTS [34] 8,964 7,851
GSV [68] 62,068 20,696
SFTGAN [64] 10,200 4,596
Our Collections 687 687

Street (ST) GSV [68] 62,068 20,000
Cityscapes [12] 19,998 19,998

Farmland (FL) Our Collections 830 830

Satellite (SL)

Haze1k [25] 1,035 898
Forest Fires [19] 42,815 42,815
DGLCC [13] 1,146 1,146
DGRED [13] 8,570 8,570

Total GT Images: 130,193

HazeSpace2M dataset. Similarly, we take 20,000 out of 62,068 images
from the GSV [68] dataset as the rest match criteria 3. Thus, we
ensure the quality and reusability of the GT images while we collect
the GT images for HazeSpace2M from a wide range of sources.
Scene Types. As mentioned earlier, our HazeSpace2M dataset com-
prises diverse scenes. Outdoor images provide aerial and ground-
level views of urban environments, capturing elements like archi-
tecture and traffic. Street view offers a closer look at urban roads
and daily life. Farmland images focus on agricultural areas, detailing
rural landscapes. Satellite images from high altitudes afford expan-
sive views of the Earth’s valuable surface for geographical and
environmental studies and tracking changes in land use patterns,
highlighting details unnoticeable at ground level. The images with
the green line in Figure 1 display some sample images of different
scenes of the HazeSpace2M dataset.
Haze Types. The HazeSpace2M dataset features three hazes types:
Fog, EH, and Cloud. The haze types are applied to the GT images
to create ten different haze intensities, which means that from each
GT image, we produce ten hazy images of different haze intensity,
which varies from light to dense.

Fog: Fog is caused by the presence of water droplets in the air,
typically when there is a high relative humidity. It is a ground-level
haze that reduces visibility.

Cloud: Cloud haze is characterized by cloud formations at various
altitudes, affecting the lighting and contrast in images.

Environmental Haze (EH): EH is an atmospheric condition char-
acterized by fine particles, aerosols, and pollutants suspended in the
air. It is commonly caused by human activities, including industrial
emissions and vehicle exhaust, but can also originate from natural
sources such as burning from wildfires and agricultural lands. The
images with the yellow line in Figure 1 display some sample images
of different haze types of the HazeSpace2M dataset.
Real Haze Testset (RHT): The RHT comprises a collection of
real-life hazy images sourced online to evaluate the ability of our
classification models to identify haze types in real-world scenar-
ios. These images are curated using specific search terms; for in-
stance, searches for "foggy images," "foggy weather," and "winter
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Table 3: Number of GT and hazy images in HazeSpace2M subsets by scene type and haze condition, with subset names.

Subset Names of Subsets Names of HazeSpace2M
HazeSpace2M depending HazeSpace2M depending Nature of # of GT # of Hazy
on various Scene Types on various Haze Types the Image Images Images

Outdoor (OD) Outdoor Fog (ODF) Synthetic 35,936 359,360
Outdoor Environmental Haze (ODEH) Synthetic 359,360

Street (ST) Street Fog (STF) Synthetic 39,998 399,980
Street Envirnmental Haze (STEH) Synthetic 399,980

Farmlands (FL) Farmland Fog (FLF) Synthetic 830 8,300
Farmland Envirnmental Haze (FLEH) Synthetic 8,300

Satellite (SL) Satellite Cloud (SLC) Satellite 53,429 534,290

Real Haze Testset (RHT) - Real - 1,030

Total: 130,193 2,070,600

Total # of Images (GT + Hazy) in HazeSpace2M dataset: 2,200,793 (2.2 Million Images)

Table 4: Comparative evaluation of image quality metrics across the existing datasets. The comparison of PSNR and SSIM
values for the lowest and highest haze levels across different datasets, including our HazeSpace2M dataset.

Datasets Scene Haze types # of GT # of Hazy Lowest Haze Level Highest Haze Level
Type Fog Cloud EH Images Images PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

FRIDA [58, 59] Outdoor ✓ × × 84 420 27.54 0.81 29.92 0.69
Foggy Driving [12] Street ✓ × × 10,425 10,425 28.50 0.88 27.70 0.68
I-Haze [37] Outdoor Not Specified 30 30 29.34 0.85 27.57 0.48
O-Haze [50] Satellite Not Specified 45 45 28.96 0.80 27.49 0.37
SOTS [34] Outdoor Not Specified 8,964 313,950 29.27 0.99 27.44 0.83
NH Haze [6] Outdoor Non-Homogenous 55 55 28.43 0.66 27.70 0.22
Haze1k [25] Satellite × ✓ × 1,035 1,035 28.51 0.91 27.49 0.23
RS Haze [50] Satellite × ✓ × 6,000 54,000 27.57 0.97 27.27 0.52

HazeSpace2M

Outdoor ✓ × ✓ 35,936 718,720 30.91 0.98 27.11 0.25
Street ✓ × ✓ 39,998 799,960 31.91 0.98 27.36 0.39

Farmland ✓ × ✓ 830 16,600 32.32 0.97 27.08 0.23
Satellite × ✓ × 53,429 534,290 34.61 0.98 27.49 0.23

fog" helped label images as Fog. Similarly, searches using "environ-
mental haze," "air pollution," "wildfire," and "smoky environment"
facilitated the labeling of images as EH. We meticulously verify
each image’s visual characteristics and origin to accurately repre-
sent the specified haze type. Thus, we collected around 686 images
with fog haze and 344 with EH. The images with the red line in
Figure 1 present some sample images of the RHT subset of the
HazeSpace2M dataset. However, sourcing original satellite images
depicting cloud haze posed a challenge. To address this, we incor-
porated 500 satellite cloudy images from the RS Haze [50] dataset
into RHT, enabling comprehensive evaluation of the classifiers.

3.2 Annotation Process and Tools
Inspired by [25] and [50], we utilized Adobe Photoshop 25.1 with
its advanced ML-based Neural Filters [2] to generate hazy images
for our HazeSpace2M dataset. We crafted Photoshop actions [3],
which automate editing tasks, to create varied haze levels. This ap-
proach efficiently processed our dataset of over two million images
generated over months using three computers.

3.3 Quantitative Analysis
The HazeSpace2M dataset, as shown in Table 3, includes Fog and EH
hazing on its Outdoor (OD), Street (ST), and Farmland (FL) subsets,
while the Satellite (SL) subset is treated with Cloud haze, creating

subsets designated as ODF, STF, FLF for Fog; ODEH, STEH, FLEH
for EH; and SLC for Cloud haze. The OD, ST, FL, and SL subsets
consist of synthetic hazy images alongside RHT a subset of real hazy
images. Fog and EH haze types applied across ten intensity levels to
the OD subset’s 35,936 GT images result in 718,720 hazy images for
OD, equally split between ODF and ODEH. The ST and FL subsets
yield 816,560 hazy images from 40,828 GT images, and SL comprises
534,290 Cloud-hazy images from 53,429 GT images. Totaling around
130,193 GT images, the HazeSpace2M spans approximately 2.2
million hazy images when considering all three haze types and ten
haze intensities per GT image, detailed in Table 3.

Compared to established datasets in literature [4–6, 12, 25, 34, 50,
58, 59], Table 4 presents the comparative PSNR and SSIM metrics.
The HazeSpace2M dataset demonstrates high PSNR and SSIM at
the lowest haze level, reflecting clear images under minimal hazing.
At the highest haze level, these metrics show a marked reduction,
illustrating the substantial impact of intense hazing. This variance
signifies the dataset’s wide range of haze intensities, providing
a broader scope for analysis than previous datasets. The HazeS-
pace2M also exceeds others in image volume, offering an extensive
array of GT and hazy images. Including the FL subset introduces a
new scene type to the dataset, enriching the diversity and research
applicability. Comparing the scene types and the haze types, it is
evident that the HazeSpace2M consists of a diverse type of scene
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Figure 2: Our proposed framework for specialized dehazer-based intelligent dehazing based on the haze type classification in
image enhancement workflows, including (A) training classifiers to recognize haze types, (B) using the classifier to identify the
type of haze in a single input image, (C) selecting the appropriate dehazer based on the haze classification, and (D) the final
dehazing process to clear the image from atmospheric obscurations with the selected specialized dehazer.

and haze compared to the existing haze image datasets. Each subset
within HazeSpace2M contains GT and hazy images, establishing
its superiority in dataset quantity and scene variety.

4 PROPOSED FRAMEWORK
Our proposed approach for intelligent dehazing based on haze
type classification is illustrated in Figure 2. It has four main blocks,
each with a particular task. As shown in Figure 2A, we use the
dataset to train the SOTA classification models [21, 22, 26, 27, 30,
38, 41, 47, 49, 53–56] to identify which models can classify haze in a
single-input image. Thus, we benchmark the SOTA models against
existing synthetic hazy benchmarking datasets and the Real Hazy
Testset of the HazeSpace2M. Then, as illustrated in Figure 2B, we
use the trained classifier for classifying the haze in a single input
image. In this paper, we train the SOTA classification models on
the HazeSpace2M dataset for haze type classification. As shown in
Figure 2C, based on the classification result and the output haze
type, the model selects a suitable dehazer and performs the infer-
ence accordingly in the Inference Block, which is illustrated in
Figure 2D. As with the classification models, we train three de-
hazing algorithms for three different hazes, namely Fog, EH, and
Cloud, on our HazeSpace2M dataset. These dehazers are trained
based on the modified ASM [60] over 100 epochs. Utilizing these
three specialized dehazers, the complete framework we propose for
specialized dehazers-based intelligent dehazing based on haze type
classification is depicted in Figure 2.

4.1 Experimental Setups
We conduct several experiments in line with the methodology illus-
trated in Figure 2. Our focus begins with training and evaluating

classification models, followed by assessing generalized and spe-
cialized dehazers using the HazeSpace2M dataset.
Haze Type Classification. For training and validating the classifi-
cation models, we take subsets from the HazeSpace2M dataset and
split them as follows:

Train and Validation Dataset: We train our models using 15,000
images from the HazeSpace2M dataset, evenly split into three haze
types with 5,000 images each. We allocate 85% (12,750) for training
and 15% (2,250) for validation.

Test Dataset: We assess models on synthetic and real-life hazy
images, creating different sets of testing datasets using the existing
Hazy Benchmarking Datasets (HBDs) [5, 12, 25, 34, 50, 58, 59]. We
also test the models against the RHT subset of the HazeSpace2M.

To ensure uniform training, all models used a batch size 32,
a 0.001 learning rate, and a 512-pixel resolution. Following the
footsteps of DTMIC [31], eachmodel underwent a 50-epoch training
with a 10-step patience early stopping technique.
Single Image Dehazing. We introduce two terms, namely Spe-
cialized Dehazer and Generalized Dehazer, and defined below to
differentiate between the training processing for each.

Specialized Dehazer (SD): This term refers to a dehazing model
explicitly trained on images of a particular type of haze. For instance,
a model trained exclusively on foggy images to dehaze fog-related
obscurities is considered an SD.

Generalized Dehazer (GD): In contrast, the Generalized Dehazing
model is trained on a broader spectrum of hazy images. The GD
model is not limited to a specific type of haze but is designed to
handle various hazy conditions.

To conduct experiments with SD and GD, we utilize the same
dehazer architecture as depicted in Figure 2D. This architecture is
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Table 5: Evaluation of the SOTA classifiers using accuracy (ACC), precision (PRE), and recall (REC) on various combinations of
the hazy benchmarking datasets, highlighting their effectiveness for haze type classification after training on the HazeSpace2M.

Models

Different Combinations of Hazy Benchmarking Datasets for Haze Type Classification

Average ACC
Fog: FRIDA Fog: Cityscapes Fog: Cityscapes Fog: Cityscapes
EH: O-Haze EH: NH-Haze EH: NH-Haze EH: O-Haze

Cloud: Haze1k Cloud: Haze1k Cloud: RS-Haze Cloud: Haze1k
ACC PRE REC ACC PRE REC ACC PRE REC ACC PRE REC

AlexNet [30] 0.96 0.96 0.96 0.95 0.95 0.95 0.83 0.91 0.83 0.96 0.96 0.96 92.50
ConvNextLarge [38] 0.88 0.93 0.88 0.86 0.92 0.86 0.80 0.93 0.80 0.88 0.94 0.88 85.50
DenseNet121 [26] 0.98 0.98 0.98 0.90 0.96 0.90 0.63 0.95 0.63 0.90 0.97 0.90 85.25
DenseNet161 [26] 0.91 0.92 0.91 0.89 0.95 0.89 0.68 0.87 0.68 0.88 0.94 0.88 84.00
DenseNet169 [26] 0.94 0.93 0.94 0.94 0.95 0.94 0.73 0.87 0.73 0.93 0.95 0.93 88.50
DenseNet201 [26] 0.96 0.96 0.96 0.96 0.96 0.96 0.78 0.94 0.78 0.97 0.97 0.97 91.75
EfficientNet_B0 [56] 0.88 0.95 0.88 0.85 0.95 0.85 0.63 0.92 0.63 0.85 0.96 0.85 80.25
EfficientNetV2Large [56] 0.90 0.93 0.90 0.87 0.91 0.87 0.65 0.88 0.65 0.88 0.93 0.88 82.50
GoogleNet [53] 0.86 0.86 0.86 0.88 0.89 0.88 0.74 0.86 0.74 0.89 0.90 0.89 84.25
Inception_V3 [54] 0.78 0.86 0.78 0.79 0.89 0.79 0.68 0.90 0.68 0.80 0.91 0.80 76.25
MNasNet [55] 0.94 0.95 0.94 0.82 0.94 0.82 0.52 0.93 0.52 0.82 0.95 0.82 77.50
MobileNetV2 [47] 0.92 0.95 0.92 0.80 0.95 0.80 0.70 0.96 0.70 0.81 0.96 0.81 80.75
MobileNetV3 [22] 0.76 0.94 0.76 0.51 0.92 0.51 0.43 0.95 0.43 0.51 0.94 0.51 55.25
ResNet50 [21] 0.96 0.96 0.96 0.95 0.94 0.95 0.84 0.92 0.84 0.96 0.96 0.96 92.75
ResNet101 [21] 0.98 0.98 0.98 0.94 0.96 0.94 0.78 0.92 0.78 0.94 0.95 0.94 91.00
ResNet152 [21] 0.97 0.97 0.97 0.94 0.96 0.94 0.76 0.93 0.76 0.94 0.96 0.94 90.25
ShuffleNetV2 [41] 0.86 0.87 0.86 0.90 0.91 0.90 0.76 0.94 0.76 0.90 0.91 0.90 85.50
SqueezeNet1 [27] 0.96 0.96 0.96 0.90 0.94 0.90 0.71 0.96 0.71 0.91 0.96 0.91 87.00
VGG16 [49] 0.95 0.94 0.95 0.93 0.92 0.93 0.84 0.92 0.84 0.95 0.94 0.95 91.75

developed based on the modified Atmospheric Scattering Model
(ASM) [60] for removing haze in a single input image as follows:

𝐼 (𝑥) = 𝐽 (𝑥) × 𝑡 (𝑥) +𝐴 × (1 − 𝑡 (𝑥)). (1)
here 𝐾 (𝑥) represents a combined variable that encapsulates both
𝑡 (𝑥) and 𝐴, while 𝐼 (𝑥) signifies the observed hazy image. 𝐴 is the
global atmospheric light and 𝑡 (𝑥) is the transmissionmap as follows:

𝑡 (𝑥) = 𝑒−𝛽𝑑 (𝑥 ) , (2)
where 𝛽 is the scattering coefficient of the atmosphere, and 𝑑 (𝑥)

is the distance between the object and the camera. The modified
version of Eq. (1) that is proposed for LDNet gives improved perfor-
mance for removing haze from the images, which is verified through
comprehensive inferences on different datasets [60]. Hence, for the
experiments in our paper, we employ the modified version of the
ASM model that is stated as follows:

𝐽 (𝑥) = 𝐾 (𝑥) × 𝐼 (𝑥) − 𝐾 (𝑥) + 𝑏bias, (3)

here the bias term is incorporated with a default value of 1 and the
encapsulated values of 𝑡 (𝑥) and 𝐴, which we define by 𝐾 (𝑥), as:

𝐾 (𝑥) =
1

𝑡 (𝑥 ) × (𝐼 (𝑥) −𝐴) + (𝐴 − 𝑏bias)
(𝐼 (𝑥) − 1) . (4)

For the experiments of single image dehazing and to know if SD
performs better than GD, we use LDNet [60] that is developed based
on Eq. (3) with the same hyperparameter settings as the backbone of
our dehazer algorithms and train them with our mentioned training
datasets in different steps as follows:

• LDNet: Trained using the RESIDE [34] dataset, a common
benchmark in dehazing research.

• GDNet: Trained on 150,000 images, with 50,000 from each
category: Fog, Cloud, and EH, for a generalized model.

• SDNets: Individually trained on distinct haze types. Initially,
the model is trained exclusively on Fog type hazy images,

followed by training on Cloud type, and finally on EH type
hazy images, with each model saved after training.

With these setups of the dehazers mentioned above, we organize
the training, validation, and test datasets in the following manner:

Train and Validation Dataset: For SD models targeting Fog, EH,
and Cloud, we use 5,000 GT images and their 50,000 corresponding
hazy images at ten intensity levels from each class in the HazeS-
pace2M dataset. Each SD model is trained with 50,000 hazy images.
For the GD model, we combine 50,000 hazy images from each class,
creating a 150,000-image dataset. Both datasets are split 90/10 for
training and validation.

Test Dataset: To evaluate the performance of the SD and GD
models for different types of hazes, we curated a test subset from
the HazeSpace2M dataset with the images unseen to the model.
This subset comprises 1,000 hazy images for each haze category,
distributed across ten distinct intensity levels. This test dataset
verifies the models’ robustness and effectiveness in handling a
broad spectrum of haze types and varying levels of haze intensity.

5 EXPERIMENTAL RESULTS
Our experiments on haze type classification and single image dehaz-
ing showcase the versatility and broad applicability of the HazeS-
pace2M dataset, with results discussed in subsequent sections.

5.1 Results of Haze Type Classification
Our evaluation of SOTA classification models on both synthetic and
real hazy images commenced with a training phase of 50 epochs,
subsequently assessing performance on the HBDs and RHT datasets
are presented in Table 5 and Table 6. Initial results highlighted
the challenge within the RHT subset, as most models fell short
of achieving 80% accuracy. Nonetheless, ResNet50 surpassed this
benchmark, showcasing its potential for single image haze type
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Table 6: Evaluation of the SOTAmodels against the Real Hazy
Testset (RHT) of the HazeSpace2M dataset.

Models Accuracy Precision Recall

AlexNet [30] 0.70 0.71 0.70
ConvNextLarge [38] 0.63 0.72 0.63
DenseNet121 [26] 0.46 0.69 0.46
DenseNet161 [26] 0.58 0.67 0.58
DenseNet169 [26] 0.56 0.65 0.56
DenseNet201 [26] 0.68 0.71 0.68
EfficientNet_B0 [56] 0.49 0.64 0.49
EfficientNetV2Large [56] 0.48 0.67 0.48
GoogleNet [53] 0.66 0.68 0.66
Inception_V3 [54] 0.54 0.63 0.54
MNasNet [55] 0.45 0.68 0.45
MobileNetV2 [47] 0.60 0.71 0.60
MobileNetV3 [22] 0.60 0.71 0.60
ResNet50 [21] 0.80 0.78 0.80
ResNet101 [21] 0.70 0.72 0.70
ResNet152 [21] 0.63 0.71 0.63
ShuffleNetV2 [41] 0.67 0.72 0.67
SqueezeNet1 [27] 0.65 0.73 0.65
VGG16 [49] 0.70 0.69 0.70

classification despite being only trained for a short period and
training with a subset of the HazeSpace2M dataset.

Expanding our investigation, as stated in Table 5, some of the
SOTA models namely AlexNet, DenseNet201, ResNet50, ResNet101,
ResNet152, and VGG16 give over 90% accuracy on average against
the different combinations of HBDs, while models like Inception_V3,
MNasNet, MobileNetV3 give 70% accuracy below on average. The
bold values for each accuracy (ACC) column represent the top
accuracy among all the accuracies while testing the models against
the corresponding combinations of the HBDs, while the underlined
values represent the second-highest accuracies. The average ACC
column shows the average accuracy achieved by eachmodel against
the HDBs. Exploring this column, we find that the AlexNet achieves
an accuracy of 92.50%, while ResNet50 outperforms the AlexNet
with a slightly improved accuracy of 92.75%. Analyzing all these
facts, we observed that ResNet50 and AlexNet performed robustly
throughout the testing of different combinations of the HBDs.

We further evaluate all the models against the RHT to observe
the performance of these models on images affected by the real
atmospheric haze. As presented in Table 6, we still found ResNet50
to outperform the other models with an accuracy of 80%, while
AlexNet, ResNet101, and VGG16 achieved 70% accuracy.

While several models result in very good accuracy on the syn-
thetic datasets and very low accuracy on the RHT, the challenge lies
in classifying haze types on a real hazy image. The ResNet50 shows
some robustness by giving 80% accuracy, while the other models
failed. The inference results on the RHT images are presented in the
Figure 3, showing some of the correctly classified RHT images by
the ResNet50 model. Overall, the results show the need to develop
robust classification models that can outperform the existing SOTA
models in the context of atmospheric haze type classification.

5.2 Results of Single Image Dehazing
To investigate the effectiveness of SD models over GD models in
single image dehazing, we conducted extensive evaluations using
the HazeSpace2M dataset. Our methodology involved training the
LDNet [60] and its SD and GD variants across three distinct stages.

Figure 3: Hazy images from the RHT showing correct haze
type classification by ResNet50 with prediction probabilities.

Our study rigorously evaluated the original LDNet dehazing
model, achieving average PSNR, SSIM, andMSE values of 28.15, 0.65,
and 99.89, respectively. We based these averages on comprehensive
testing against various haze types, having 1000 hazy images for
each haze type with detailed results outlined in Table 7.

Similarly, our evaluation of the GDNet and SDNet models on
identical test sets, as detailed in Table 7, reveals that the SD models
surpass the LDNet and GDNet in performance. The SDNet models
demonstrate PSNR, SSIM, and MSE values of 28.91, 0.82, and 88.36,
outperforming the GDNet, which records 28.23, 0.70, and 98.31.

The PSNR values show an improvement of around 2.7% for LD-
Net compared to SDNets. Similarly, the performance of SDNets
improved by 2.4% over GDNet considering the PSNR values from
the experimental results presented in Table 7. Moreover, when we
examine the SSIM and MSE values, we see a clear performance dif-
ference among these models. For example, the SDNets yield around
26.15% higher SSIM and 23.75% improved MSE than the original LD-
Net. Similarly, compared to the GDNet, the SDNet models show an
increase of around 17.14% in SSIM and 10.12% enhancement in MSE
for dehazing images affected by Fog, EH, and Cloud. The SDNets
outperform the other two models in all three metrics with a PSNR
of 28.91, SSIM of 0.82, and MSE of 88.36, showing the effectiveness
of an SD model over a GD model.

In addition to comparing performance metrics, the visual exami-
nation reveals the superiority of the SD model over the GD models.
The single image dehazing examples in Figure 4 demonstrate the
visual clarity achieved by the SD model is markedly better than
that produced by the original LDNet [60] and GDNet. Figure 4(c)
presents the dehazed images of different haze types using the SDNet
models. On the other hand, the inference results of the LDNet and
GDNet, which we train traditionally with a relatively larger dataset,
have been presented in Figure 4(a & b). To compare the visual clarity
of the output images from each model, we highlight the differences
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Table 7: Performance comparison of LDNet, GDNet, and SDNets when subjected to dehazing tasks across various hazy conditions.
The average scores reflect the overall performance of each model in processing unknown hazy images.

Testsets LDNet [60] GDNet SDNets
PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓

Fog Testset 28.47 0.78 92.46 28.47 0.77 92.31 28.55 0.85 90.49
EH Testset 27.89 0.44 105.44 27.93 0.63 104.78 28.34 0.79 98.43
Cloud Testset 28.11 0.75 101.76 28.29 0.70 97.85 29.84 0.83 76.17

Average 28.15 0.65 99.89 28.23 0.70 98.31 28.91 (2.41%+) 0.82 (17.14%+) 88.36 (10.12%+)

Table 8: Benchmarking the SOTA Dehazing models.

Year SOTA Pre-trained Trained+Proposed Method
Dehazers PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓

2024 DEA-Net [10] 14.02 0.7123 0.1009 34.37 0.9447 0.0015
2023 DehazeFormer [51] 15.62 0.0744 0.0744 31.32 0.9316 0.0022
2023 C2PNet [72] 14.01 0.7094 0.1030 30.25 0.9048 0.0025
2023 LHNet [67] 13.26 0.5459 99.014 25.57 0.7568 91.644
2021 LDNet [60] 28.15 0.6515 99.148 28.91 0.8254 88.368
2021 DehazeFlow [35] 25.34 0.8581 0.0547 35.29 0.9989 0.0010
2019 DM2F-Net [14] 12.35 0.5263 80.542 25.54 0.7964 0.0037

Table 9: Evaluating top SOTA models on foggy datasets.

Year Top 3 SOTA FRIDA [58, 59] Cityscapes [12] HazeSpace2M (Fog)
Dehazers PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

2024 DEA-Net [10] 25.14 0.8974 20.15 0.8546 14.02 0.7123
2023 DehazeFormer [51] 20.65 0.1698 18.21 0.1254 15.62 0.0744
2021 DehazeFlow [35] 35.54 0.9899 30.01 0.9289 25.34 0.8581

via the rectangles. Considering PSNR and SSIM, the SDNet models
give higher values than both traditional models, where LDNet has
trained on RESIDE [34] dataset, and GDNet is trained on a subset
of the HazeSpace2M dataset. We ran the inference on the images
unknown to the models, i.e., we did not use these images to train
the models. It should be noted that the training sets for the SDNet
models are 50,000 images, whereas the training set for the GDNet
model is 150,000. Even though we train the GDNet model with
3× more different haze types images, SDNets outperform GDNet,
ensuring the superiority of our proposed framework.

Furthermore, we benchmark the latest SOTA dehazing models
in Table 8 to showcase their performance before and after apply-
ing our proposed method. For example, the DEA-Net model shows
significant improvement in PSNR from 14.02 to 34.37 and SSIM
from 0.7123 to 0.9447 after integrating our method, with a notable
reduction in MSE from 0.1009 to 0.0015. This trend of enhanced
performance with our proposed method is consistent across other
models, such as DehazeFormer and C2PNet from 2023, which also
exhibit improvements across all metrics. Likewise, we evaluate
the top 3 SOTA dehazing models from Table 8 on different foggy
datasets, including the fog subset of our HazeSpace2M, and the
results are presented in Table 9. The results show that the SOTA
models achieve lower PSNR and SSIM when testing on the HazeS-
pace2M foggy subset than on the FRIDA and Cityscapes datasets,
highlighting the challenging nature of our HazeSpace2M dataset.

This data supports the superiority of specialized dehazing tech-
niques. Classifying the type of haze in an image (Figure 2B) and
applying the appropriate dehazing method (Figure 2C) enhances

Figure 4: Visual comparison of dehazing results from LDNet,
GDNet, and SDNet, with PSNR and SSIMmetrics highlighted.

model efficacy. Here, our HazeSpace2M leads the way by offering a
diverse, large, and challenging hazy dataset with the confirmation
of haze type classification, which results in better dehazing.

6 CONCLUSION
Atmospheric haze poses a significant challenge for autonomous de-
vices, such as self-driving vehicles and drones, that rely on computer
vision for navigation. While state-of-the-art dehazing algorithms
exist, they are typically trained for a single type of haze, limiting
their effectiveness across weather conditions like Fog, Clouds, or
EH. Moreover, the need for more diverse datasets hampers the de-
velopment of robust models. To address this, we introduce HazeS-
pace2M, a comprehensive dataset of over 2 million images that
supports haze type classification and specialized dehazing. While
our computational resources are limited for training with the entire
dataset, our benchmarks demonstrate that classifying haze types
before applying targeted dehazing models significantly improves
image clarity, enhancing the performance of autonomous systems
and security applications in diverse atmospheric conditions. Fu-
ture efforts will focus on expanding the dataset’s diversity in haze
types, depths, and intensities and benchmarking dehazing mod-
els to fully leverage HazeSpace2M’s potential. Overall, our study
demonstrates the significant role of accurate haze type classifica-
tion in enhancing dehazing outcomes, offering a promising path
forward for precision in image processing under adverse weather
conditions, thereby filling a crucial gap in the field and setting the
stage for future advancements.
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1 QUALITITATIVE ANALYSIS
We analyzed the haze distributions across images and the 10 levels
in our HazeSpace2M. As shown in Figure 1, the distributions of
the images are varied across different levels of the hazes, which is
crucial to generalize the dehazing models on unknown data.

Figure 1: Haze distribution of HazeSpace2M dataset.

We assured the quality of the GT images while picking them from
various sources, as also mentioned in Section 3.1 (Data Collection
andGeneration) of the paper. For example, we eliminated the images
from the SOTS [2] dataset, finding the images with hazes present
in them. Figure 2 shows some hazy images that we found during
data collection, which were disqualified to be the GT images of the
HazeSpace2M dataset.

Figure 3 offers a visual range of haze intensities within the HazeS-
pace2M dataset, showcasing images that progressively intensify
in the haze. This array of I mages vividly demonstrates the range
of visibility reduction across various environmental conditions, in-
cluding outdoor scenes, streets, farmlands, and satellite views. Each
row corresponds to a different subset, with the transition from left
to right depicting a gradual increase from clear to heavily hazed
images. The gradation serves as a crucial reference for developing
and testing dehazing algorithms, enabling a nuanced understanding
of how different haze levels affect image perception. This represen-
tation underscores the dataset’s versatility and richness, making it
a valuable resource for researchers aiming to improve image clarity
in diverse atmospheric conditions. The visual gradation also high-
lights the dataset’s potential to train models that can accurately
classify haze types. This ensures optimal image enhancement in a
wide range of real-world multimedia applications.

∗Corresponding author

Figure 2: Sample images that we eliminated while collecting
images for use as the GT images in the HazeSpace2M dataset.

We found the ResNet50 [1] model to give the best accuracy, as
discussed in Section 5.1 (Results of Haze Type Classification) when
evaluating against the synthetic benchmarking datasets and the
real hazy image dataset for classifying the haze type presented in a
single input image. Figure 4(a) reveals the training and validation
loss curves for the ResNet50 [1] model. These curves illustrate
a decrease in validation loss relative to training loss over time.
Additionally, the figure indicates that the model’s training was
halted after 35 epochs using the early stopping technique. The
confusion matrix for the same model is also presented in Figure
4(b), which shows that even though the model classifies the Cloud-
type haze with higher accuracy, it struggles to classify the two
other hazes, namely Fog and EH. The confusion matrix and the
precision-recall curve are presented in Figure 4(b & c), showing that
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Figure 3: Examples of haze intensities across different scene types within the HazeSpace2M dataset. Each row represents a
subset (Outdoor, Street, Farmland, and Satellite) with images transitioning from low to high haze levels, following the order of
left to right. To avoid repetition, abbreviations used in this figure are not defined and are given in Table 3 of the main paper.

Figure 4: (a) Train and validation loss curve for training the ResNet50 model, (b) Confusion matrix of ResNet50, and (c)
Precision-recall curve of the same model while evaluating it on the Real Hazy Testset (RHT) of the HazeSpace2M dataset.
ResNet50 is selected as a sample because its result is the highest on the RHT.
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Table 1: Comparative analysis of PSNR across varying haze levels. This table details the PSNR values for different haze intensities
(L1 to L10) within the HazeSpace2M dataset, divided by scene types (Outdoor, Street, Farmland, Satellite) and haze types (Fog,
EH, Cloud). These metrics provide insights into the consistency of image quality amidst diverse hazy environments.

Scene Haze Type Average PSNR for different levels of haze
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Outdoor Fog 29.32 28.00 27.70 27.70 27.77 27.71 27.72 27.71 27.74 27.78
EH 27.74 27.85 27.86 27.86 27.91 27.89 27.89 27.87 27.82 27.87

Street Fog 30.53 29.49 28.95 28.63 28.45 28.37 28.20 28.20 28.16 28.17
EH 27.68 27.72 27.86 27.92 27.84 27.78 27.76 27.82 27.87 27.79

Farmland Fog 29.67 28.26 27.82 28.26 27.82 27.80 27.75 27.76 27.80 27.85
EH 27.70 27.77 27.87 27.92 27.96 27.92 27.89 27.88 27.82 27.80

Satellite Cloud 29.67 29.49 27.58 27.49 27.63 27.72 27.87 27.99 28.07 28.11

Average 28.90 28.37 27.95 27.97 27.91 27.88 27.86 27.89 27.89 27.91

Table 2: Evaluation of image quality across haze intensity levels. This table shows average SSIM scores for different levels of
haze (L1 to L10) within the HazeSpace2M dataset across various scenes (Outdoor, Street, Farmland, Satellite) and corresponding
haze types (Fog, EH, Cloud), illustrating the dataset’s utility for image quality assessment under varying hazy conditions.

Scene Haze Type Average SSIM for different levels of haze
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Outdoor Fog 0.97 0.94 0.83 0.83 0.79 0.71 0.68 0.66 0.64 0.60
EH 0.96 0.91 0.83 0.81 0.77 0.73 0.70 0.65 0.63 0.59

Street Fog 0.98 0.97 0.94 0.90 0.86 0.79 0.74 0.74 0.67 0.63
EH 0.96 0.91 0.84 0.82 0.78 0.74 0.70 0.66 0.65 0.60

Farmland Fog 0.97 0.94 0.56 0.94 0.56 0.51 0.67 0.64 0.61 0.57
EH 0.94 0.88 0.79 0.76 0.72 0.68 0.64 0.61 0.56 0.51

Satellite Cloud 0.97 0.98 0.94 0.85 0.76 0.72 0.66 0.60 0.56 0.52

Average 0.96 0.93 0.82 0.84 0.75 0.70 0.68 0.67 0.62 0.57

some of the hazes were classified as EH while they were actually
Fog and vice versa. This is because of the nature of the hazes. In
reality, the EH and Fog-type hazes are quite similar, validating the
challenges in classifying haze types in real images.

2 PSEUDOCODE

Pseudocode of the Proposed Framework. In this paper, we
propose a novel technique of specialized dehazers-based smart
image dehazing based on the haze type classification. Algorithm
1 presents a step-by-step pseudocode of our proposed framework
for processing a hazy image 𝐼ℎ to output the haze type ℎ𝑡 and
the corresponding dehazed image 𝐽 (𝑥). The algorithm requires
a dataset Ω, a classifier C, and a set of trained dehazers Δ𝜃 . The
process begins by preparing the data, training a classifier on the
dataset, classifying the type of haze present in the input image,
selecting an appropriate dehazer based on this classification, and
finally applying the selected dehazer to produce a clear image.

Table 3 defines the symbols used in the algorithm, connecting
the abstract symbols to their concrete meanings within the con-
text of image dehazing. The table serves as a quick reference for
understanding the variables and entities involved in the algorithm.

Together, the pseudocode and the table of notations provide a
comprehensive overview of the proposed dehazing technique.

Table 3: Descriptions of the notations used in Algorithm 1.

Symbols Description Symbols Description

Ω Dataset 𝜏 Train dataset
𝜈 Validation dataset 𝜌 Test dataset
𝜙 Dehazers Δ𝜃 Trained dehazers
C Classifier ℎ𝑡 Haze type
𝐼ℎ Hazy input image 𝐽 (𝑥 ) Dehazed image
𝛿 Modified ASM model

3 QUANTITATIVE ANALYSIS
As it is an extensive dataset, it is highly time-consuming to calculate
the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) values for each hazy image. So, we separated 1,000
hazy images from level 1 to level 10 haze intensity as a sample and
calculated the average PSNR and SSIM values for each subset and
level. Table 1 and Table 2 compare image quality metrics, PSNR, and
SSIM across different haze levels within the HazeSpace2M Dataset.
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Average PSNR. Table 1 presents a comparative analysis of PSNR
values across different haze intensities, offering an in-depth view
of the image quality within the HazeSpace2M dataset. From left to
right of the table, the haze intensity increases as the level increases,
which is also evident by the average PSNR values of the images,
considered here as a sample. It also breaks down the dataset by scene
types (Outdoor, Street, Farmland, Satellite) and haze types (Fog, EH,
Cloud), showing the impact of various haze levels on image clarity.
This table is a testament to the dataset’s comprehensive nature and
applicability in assessing image quality in hazy conditions.

Average SSIM. Table 2 further complements this by providing
average SSIM scores for the same levels of haze intensity, scene,
and haze types. SSIM scores provide insight into the perceived
quality of images, highlighting the dataset’s utility for more subjec-
tive assessments of image quality under varying hazy conditions.
These metrics collectively underscore the dataset’s robustness for
developing advanced dehazing algorithms.
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Algorithm 1 Pseudocode of our proposed framework for haze
aware single image dehazing.
1: Input: Hazy image 𝐼ℎ
2: Outputs: Haze type ℎ𝑡 , Dehazed image 𝐽 (𝑥 )
3: Require: Ω, C, Δ𝜃 = {𝜙cloud, 𝜙EH, 𝜙fog}
4: Data preparation: [𝜏, 𝜈, 𝜌 ] = split_dataset (Ω)

5: Procedure: TrainClassifier(𝜏 )
6: Train classifier C using dataset 𝜏
7: return C
8: End Procedure

9: Procedure: ClassifyHazeType(𝐼ℎ , C)
10: Haze type ℎ𝑡 ← C(𝐼ℎ )
11: return ℎ𝑡

12: End Procedure

13: Procedure: PickDehazer(ℎ𝑡 , Δ𝜃 )
14: Dehazer 𝛿 ← select a dehazer from Δ𝜃 based on ℎ𝑡
15: return 𝛿

16: End Procedure

17: Procedure: DehazeImage(𝐼ℎ , 𝛿)
18: Dehazed image 𝐽 (𝑥 ) ← 𝛿 (𝐼ℎ )
19: return 𝐽 (𝑥 )
20: End Procedure


